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Problem and Approach- Detection of chemical 

agents such as explosives and biological agents in air and 
water is of current importance.  The integration of micro 
sensors for agent detection into a robotic system can 
greatly enhance the safety and efficacy of the detection 
system.  Our research aim is two-fold.  1) To create a 
sensing system that can detect chemical agents in 
explosives and biological agents in air and water and 2) 
to implement the detection technology into a handheld 
unit or a mobile robot system (such as ODIS-omni 
directional inspection system) that allows the soldier to 
deliver the sensing system to remote targets.  In the case 
of explosives detection, the sensing system includes a 
thermoplastic polyurethane concentrator that absorbs the 
main vapor byproduct of TNT.  This concentrator will 
release, in burst mode, higher levels of TNT vapor 
byproduct to allow detection under real environmental 
conditions.  In addition, a biological sampling and 
concentration system can be implemented to detect small 
quantities of bacteria.  Two methods of detection are 
implemented including a physical vapor detector and an 
optical probe detector.  These lightweight miniature 
detection systems are integrated into a remote 
manipulator arm on the mobile robotic platform.  The 
platform has an automatic scanning mode and motion 
control for flexible remote control.  
 

Explosives Detection- Explosive charges are always 
accompanied by impurities such as 2,4-dinitro toluene 
(DNT), 2,6-DNT, 1,3-dinitro benzene (DNB) and 2,4-
DNB in the TNT, and these impurities generate higher 
vapor concentrations than 2,4,6-TNT itself.1   2,4-DNT is 
an impurity, as a solid constituent in the range of 
9.32×10-5 to 7.43×10-4 g/g of  TNT at 22 oC in the 
military grade TNT.  A headspace vapor constituent of 
2,4-DNT was 6.9×10-11 to 1.9×10-9 g/g , which is 
significantly higher than 2,4,6-TNT. Similarly, 1,3-DNB 
is another impurity in the range of 1.39×10-5 to 8.88×10-
4 g/g of TNT at 22 oC.  A headspace vapor constituent of 
1,3-DNB was 2.2×10-11 to 4.3×10-9 g/g.  This is due to 
the fact that the vapor pressure of 2,4-DNT and 1,3 DNB 
are approximately 40–1000 times greater than the vapor 
pressure of TNT.  Our detection system will detect 2,4-
DNT and 2,3-DNB vapors as signature of TNT-based 
explosives.  The sensing system or explosive vapor 
detection module is composed of 4 technological 
components (Figure 1).  The development of a pre-
concentrator fabricated into a honeycomb structure with 
integrated a low power micro heater.  This polymer 
specifically absorbs DNT and DNB vapor.  In addition, 

concentrators coated with carbowax have also been 
tested.  The pre-concentrators high absorption levels for 
DNT and DNB chemical is reversed at a higher 
temperature.  This material can be used to absorb the 
background chemical signature and provide a 
concentrated burst for higher detection sensitivity. Vapor 
is pumped by an integrated MEMS micropump to one of 
two sensing systems.  

 

 
 

Figure 1- Illustration of Raman microspectrometer 
with integrated microconcentrator. 
 

The first sensing method includes a micro channel 
based system terminated in a differential surface acoustic 
wave sensor.2,3  Matching surface waves are compared 
with an acoustic wave device exposed to the sampling 
vapor and the other sealed.  Explosive impurity 
concentrates are absorbed on the surface of the exposed 
surface acoustic wave sensor using a reactive carbowax 
polymer thin film (Figure 2).  The combination of mass 
and polymer distortion creates a shift in acoustic wave 
frequency that is measured by a phase change detection 
system.  This paper describes the use of an optical probe 
for (multispectral) Raman spectroscopy used to detect 
the chemical fingerprint of TNT components.  

 
Spectra of highly diluted (parts per million) 2,4 

DNT were obtained  with both laser excitation lines and 
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Figure 2- Carbowax chemistry for binding DNT 
molecules for detection by acoustic wave or for 
trapping for photonic detection. 
 
are shown in Figure 3. The spectra are very intensive and 
easily obtainable with either excitation line, but the 
Raman scattering is typically one order of magnitude 
stronger when the 785nm excitation line is used. 
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For final sample verification we investigated direct 
sampling of explosive phantoms with trace TNT.  The 
Raman spectra were taken from the circular island on a 
substrate and from the TNT-solution-treated region on 
the PU sample. Both the 514.5nm and the 785nm laser 
excitation lines of our micro-Raman spectrometer were 
utilized. The results are shown the Figures 4 (green 
excitation) and Figure 5 (NIR excitation). The results 
indicate that explosives can be detected by both trapped 
DNT vapor and direct TNT sampling using Raman 
spectrometry.  We have developed a micro spectrometer 
on a chip for integration into a robotic platform that is 
specifically designed for high sensitivity and high 
resolution of  in the spectral region of interest.4-7 
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Figure 3- Raman spectra at two wavelengths 
identifying TNT constituents. 
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 wave
m e and a secondary horizontal mode for detection. In 
order to determine the nature of the 2nd modes, we 
investigated their damping behavior by studying their 
transmission response under fluidic loading of the film. 
In Figure 7, we show the frequency response of such a 
device before and after a 3 µl fluid loading. The ungated 
frequency response is displayed here for better 
observation of the insertion loss. One observes that the 
damping effect in the higher velocity mode is quite 
small, ~4 dB, in contrast to 30 dB for the SAW mode. 
This suggests that the 2nd mode is likely a SH-SAW that 
couples weakly to the loaded fluid and is thus able to 
propagate without much attenuation.  We have 
immobilized spherical phage receptor proteins for 
selective binding or capture of bacteria.  The captured 
bacteria create a phase shift due to mass loading and 
other perturbation effects.   In order to develop a 
compact detection system for integration into a mobile 
robot we developed a new highly sensitive RF circuit 
design. 

One of t
RF circuitry that can provide continuous and real time 
measurements capability, minimize parasitic and 
spurious noise, and obtain commeasurable performance 
as bench top instruments while retaining a much smaller 
size. Without compromising the performance, the 
described RF circuitry should be small, inexpensive, and 
self-contained--including stable RF signal sources, easy 
sensor signal output capabilities, and excellent sensor 
input/output signal conditioning to suppress the noise 
floor, which dictates the detection limit.  
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Figure 6-Water Quality Sensing System. or signal read-out: one by monitoring the phase 
change of the sensors; the other by monitoring the 
frequency change of the sensors in oscillator feedback 
loops. The latter potentially can achieve higher detection 
resolution but has less tolerance to large signal 
magnitude fluctuation, which is common in liquid phase 
biosensing. For that reason we have focused on phase 
change based detection. The schematic diagram of the 
phase monitoring approach is shown in Figure 8. The 
amplitude and phase of two identical sensors are 
differentially compared with each other. The signal 
source is a voltage controlled oscillator, which supplies a 
pure sinusoidal wave for two sensors via a power splitter. 
The differential sensor pairs are wire bonded onto a 
ceramic hybrid chip. The input/output signal 
conditioning part is composed of transformers and sensor 

impedance matching network to achieve a low noise, 
high integrity signal response. The two primary outputs 
from the system are voltages related to the amplitude 
ratio and phase difference that are caused by the sensor’s 
response to analyte sorption by the coated 
immobilization layer: 
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Figure 8- Schematic of the phase monitoring circuit. 

s1 s2k log(V / V=  

phs s1 s2V k [φ ]= Φ −Φ , 
where Vmag is one output voltage that  proportional to  is
the amplitude ratio Vs1/Vs2 of the two sensors and Vphs is 
the other output voltage that is proportional to the phase 
difference, s1 s2Φ −Φ , of the two sensors. The simple 
voltage out e system eliminates the needs for 
sophisticated data acquisition interface.  

put of th

 

Figure 7 - Damping of the SAW and SH mode under
liquid loading at wavelength λ=32 µm. 
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 The attributes such as size and cost effectiveness are 
especially important for the portable biosensor system.. 
The prototype circuit is demonstrated in Figure 9, with 
dimensions of about 2 x 4 inch. The power supply for the 
circuit is designed to operate from a 9 VDC battery 
source to supply regulated +5 VDC and +12 VDC. The 
Analog Device’s AD8302 is chosen as the key element 
for phase/amplitude measurements. This is a fully 
integrated system which enables an accurate 
measurement of either amplitude ratio over a ±30 dB 
range scaled to 30 mV/dB, and of phase over a 0°–180° 
range scaled to 10 mV/degree. The initial test results 
show that the output voltage can be stabilized in 0.1 mV 
scale, which is equivalent to a phase resolution of less 
than 0.1 degree.  

 
Figure 9 - The circuit implementation monitoring 
phase/amplitude simultaneously. 
 
Figure 10 shows the result of mass loading of the device.  
Here, phase change shifts are indicated with loading of 
the active surface of the exposed sensor.  The relative 
shift indicates a strong signal change and sensitive 
detection with less than 1% binding on the surface.  In 
addition, relative quantities of bacteria can be derived 
from the signal. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Detection by micro Raman Spectrometry 
Sensing by a “chemical sniffing canine” is based on 

a combination of the chemical binding of molecules in 
the nose and the vibration of that particular molecule.  
The combination of these two sensing methods provides 
a very sensitive and selective detection method.  As in 
the case of explosive detection, Raman spectroscopy 
uses laser reflection signals to detect the signature 
vibrations of molecular and chemical structures.  Large 
sophisticated Raman instruments have been used to 
detect a number of toxins, chemicals and recently 

biological agents. The solution is a miniaturized version 
of the Raman spectrometer for a Chemical and 
Biological Sniffer (CBS) as shown in Figure 11 
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Figure 11- Illustration of micro spectrometer for 
Raman system with photo of the fabricated 2-
dimensional self-focusing grating. 

 
We have analyzed and developed libraries of Raman 

signatures for a number of biological and chemical 
agents.  This information is used to develop a micro 
Raman system that consists of a number of concurrent 
detecting micro spectrometers, each of which is only a 
few millimeters in size.  With this new technology, the 
known selective spectroscopic peaks that signify a 
particular bacteria or chemical agent can be registered in 
parallel.  The micro spectrometers can be optimized for 
ultra low noise and high sensitivity for each of these 
identified peaks.  This enables an extremely sensitive 
analysis that is faster, smaller and more powerful for 
detection than the current tabletop system.  This system 
could be packaged in an ultra small hand held unit that is 
mass producible and can withstand adverse environments 
without the need for reagents.  

0 20 40 60 80 100 120 140
-12

-10

-8

-6

-4

-2

0

2

10 % beads

30% beads

100% beads

1% beads 

ph
as

e 
sh

ift
 (d

eg
re

e)

time (s)

 
We are currently cataloging a variety of waterborne 

bacteria strains in order to determine which regions and 
peaks can be used to uniquely identify the targeted 
bacterial species.  The averaged runs of E. coli K99 in 
DI, Strep Agalactiae, Salmonella, E. coli K12 and DI 
water are shown in Figure 11.  The results indicate a high 
degree of repeatability.    Some peaks in the range 1200-
1600 and the range 2800-3050 may be indicative to 
showing the presence of bacteria.  The peaks found at 
1335 1/cm and 1442 1/cm have been identified in the 
literature as CH and CHI deformations respectively.  The 
triplet of peaks located in the region 2800-3200 1/cm 
have been described in literature as indicators of the 

Figure 10- Phase change due to mass loading on
the acoustic wave sensor. 
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presence of bacteria and the results offer the possibility 
of being used as a general marker to determine the 
presence of biological agents. 
 
 

 
We are continuing to look for peaks that will distinguish 
bacteria strains from one another such as the Raman shift 
seen in Figure 12 in a comparison of Strep Agalactiae, 
gram positive bacteria, and E. coli 99, gram negative 
bacteria.  Statistical analysis of approximated 10-20 runs 
for E. coli and Strep Agalactiae indicate this shift is real. 
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In addition, preliminary results have confirmed our 
ability to detect unique signatures for bacterial 
endotoxins for E. coli and Salmonella as shown in Figure 
13.  The results may indicate an important distinguishing 
pattern using Raman biomarkers for LPS toxin.  One 
strategy is to use the endo or exotoxin biomarker as a 

distinguishing feature for bacteria detection.  This would 
allow the use of limited selective regions of analysis in 
the Raman spectroscopy signal.  An optimized 
microspectrometer on a chip would be fabricated to 
specifically sense in these regions. 

Comparison of Various types of Bacteria
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Figure 11- Raman spectra comparison for DI 
water, E. coli K99, E. coli K12, Strep Agalactiae, 
Salmonella, and DI water. 

Figure 13- The Raman spectrum of LPS toxins for 
E.Coli K235,E. Coli 011, and Salmonella.  The figure 
to the right is a localized region indicating LPS toxin.  
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Implementation 

The sensing unit is an ultra compact MEMS (micro 
electro mechanical systems) system packaged with 
supporting electronics in an ultra lightweight sensing 
head.  This allows direct integration into a robotic arm 
system for remote inspection.  We have developed a 
wirelessly controlled 5 degree of freedom robotic arm 
that can be mounted to the Omni Directional Inspection 
system (ODIS; Figures 14 and 15)   

 
We have developed the kinematics of the arm for 

ease of operation and perform soldier testing of the unit 
for a feedback in an iterative process of system design.  
We have also developed the human control interface 
teleoperation and semi autonomous commands required 
for a viable detection system.  We are field-testing a 
prototype robotic system in the setting of a field exercise.  
This will provide validation of both of our technological 
capability and our detection models ensuring the best 
practices for rapid detection.   

Figure 12 – Raman shift in region 3050-3100 1/cm 
may be a point to identify the difference between E. 
coli K99 and Strep Agalactiae. 

 
The ODIS platform is used as a mounting platform 

for various chemical and biological detection sensors. 
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Many sensors require close proximity to the object for 
detection purposes. As ODIS is a flat platform as shown 
in Fig 14, a robotic arm has been developed to provide 
dexterity for the mounted sensors. The sensors can be 
mounted on the arm that can be controlled remotely with 
the help of joysticks.  

 

 
 

Figure 14- ODIS robot 
 
The main criteria taken into consideration while 
designing the robotic arm was that it should be 
collapsible on the ODIS. The ODIS is required to 
perform under the car inspection, hence this criteria was 
critical in the design of the robot. The collapsible robot 
has five degrees of freedom and is equipped with a 
camera mounted on the end-effector.  
 
 
 
 
 
 
 
 
 
               
Figure 15- Left: Collapsible arm in extended position.  
Right: Collapsed position. 
 
Figure 15 shows the collapsible arm in the fully extended 
state and in the collapsible state. In the fully extended 
state, the arm stands 6 inches tall. Inverse kinematics 
algorithm was developed for the robot. This allowed the 
collapsible arm to be controlled with the help of two 
joysticks, one for rotation and one for translation. A 
graphical user interface and simulation was developed to 
understand the working envelope of the robot. Figures 
16(a) and 16(b) shows the graphical user interface and its 
working envelope. 
 

A camera mounted on the end-effector of the 
collapsible robot transmitted video signals over a 
wireless network. Two infrared sensors were mounted on 

the ODIS platform to detect obstacles. A touch sensor 
was mounted on the end-effector of the collapsible arm. 
 
 
 

  

 

 

 

Figure 16- (a) Graphical User interface for the arm 
and (b) its working envelope. 
 

The ODIS platform has a camera mounted in the 
front. Since proximity to the objects is a key factor for 
the sensors to give accurate results, human factors tests 
(Figure 17) were performed to determine which camera 
(end-effector or base) was better suited to navigate the 
robot by the tele-operator. The task was to approach the 
target within 2” of the target as quickly as possible. Ten 
subjects were used for a preliminary set of data. Time to 
task completion, distance from the target and the number 
of times the user bumped into the object were taken into 
consideration while evaluating the results.  It proved that 
the end-effector camera was faster to navigate and there 
were less number of bumps than the base camera. This 
experiment helped us gain an insight whether or not to 
provide a camera as a payload on the end-effector and 
take that into consideration while calculating the load on 
the end-effector.  
 

 6



                                                                              3 
B a s e A r m D i r e c t F a s t e r  and 

less accurate

 

Figure 17- Human factors testing using ODIS. 
 
Relevance for Army- For military applications, the 
Unmanned Ground Vehicle (UGV) System technology 
shown in this paper will greatly benefit the operators by 
reducing dangerous tasks to robotic operations through 
"stand-off". The detection of potential 
explosives/biological agents through advanced sensor 
system development along with the integration onto 
UGVs will provide benefits for applications of the Future 
Combat System (FCS) Small Unmanned Ground Vehicle 
(SUGV) system.  
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